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Abstract

- An Ordered Incidence Geometry, that is a geometry with certain axioms

of incidence and order, is proposed as a minimal setting for the fundamental

convexity theorems, such as the hyperplane separation theorem and the

theorems of Radon and Helly. These theorems are usually stated, proved, -

understood and/or applied in the context of a linear vector space, but

they require only incidence and order, (and for separation, completeness),

and none of the linear structure of a vector space.
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Geometry Ben-Tal and Ben-Isml

LNTRODUCTION.

For motivation, consider the following quote:

S" The notion of separation has proved to be one of the most fertile

, notions in convexity theory and its applications. It is based on the

fact. that a hyperplane in R" divides R3 evenly in two. in the sense

that the complement of the hyperplane is the union of two disjoint

open convex sets, the open half-spaces associated with the hyper-

plane.', ([1 'p. 95).

Let us examine this statement by means of the following model of a plane

geometry, the Moulton Incidence Plane, ([ 14 ], p. 58). peoints are pairs (z,v) on

the Cartesian plane, lines are either (i) vertical lines, or (ii) lines with non-

positive slope, or (iii) bent lines of the form,

Y+0 , if z<0
.- z +B if x > 0

where m > 0. Through any two given points a, b in the plane, there passes a

unique Moulton line T. Let the interval (a, b) between two points a, b be the

set of those points in r which lie between a and b (in the usual sense of betwee-

aea. ) A convex set can then be defined, as usual, as a set which with any two

points a, b contains the whole interval (46 b). Does a Moulton line divide the

plane into two convex sets?. The answer is ryes', its verification left to the

reader. Does it follow then, as in the above quote, that two disjoint (Moulton)

convex sets can be separated by a (Moulton) line?

Again the answer is 'yes' (see the separation theorem (T7) below), but this

cannot be deduced from classical convexity theory, which relies on the (linear)

structure of the Euclidean vector space: The Moulton plane is not a model of a

* 1
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Fig 0.1 .4 (Moulton) convex set

Euclidean geometry. Even if an ad-hoc proof can be found to establish a separa-

Dion theorem for Moulton convexity, a fresh start would be needed in order to

prove a similar result for "convex sets" in a plane geometry in which the (non-

vertical) lines are given by

y cosh (a + x) +8

The following issue thus arises: What are the relevant underlying assump-

tions (or axioms) for, say. a separation theorem? The structure of a metric vector

space (or even a topological vector space) is not germane for separation, see e.g.

[20 where the separation theorem is derived without topology. Here we go

S." further, and discard with the linear space structure altogether. All our axioms are

purely geometric. Indeed the ingredients of the standard separation theorem are

the following notions: Convex sets, hyperplanes and sides of a hyperplane. These

notions are purely geometrical, and can be fully described in terms of the follow-

ing primitives: Affine sets, their incidence properties and order relations. The

ge~ometry introduced here is given exactly in terms of the above primitives. Its

name, Ordered Incidence Geometry, is justified by the fact that for two or three

dimensions, our axioms are similar to the first two groups of HUbert's axioms for

Euclidean geometry, namely the incidence axioms and the order axioms, [ Ii].

We wish to single out one of these axioms, stating that:

2
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"If a line. not passing through any of the vertices of a triangle, meets

the triangle in one of its sides, then it must meet it. in another side."

This postulate. introduced in 1882 by M. Pasch and known as the Pasch Aziom.

was not included in Euclid's Elements. An interesting fact (well known to geom-

eters) is that the Pasch axiom is equivalent to the following (separation) state-

ment:

'A line [plane] divides the plane [space] into disjoint complemen-

tary convex sets.*

Indeed, the Pasch axiom is the corner stone of the separation theorems in ordered

incidence geometry.

For other generalizations of convexity theorems, under different axioms see

e.g. the survey by Danzer, Grunbaum and Klee ([ 7 ]) and in particular, Ky

Fan's generalization of the Krein-Milman Theorem ([ 9 ]), the Helly-type

Theorems of Levi [13] and Grunbaum (10 a, and the separation theorem (

Mazur Lemma, see theorem (T6) below) derived by Ellis ([ 8 ]) under general

assumptions. Prenowitz and Jantosciak [17] and Bryant and Webster

([3], [4 5 [5]) derived many convexity theorems for Join Geometries. where

the primitives are joins (i.e. intervals joining pairs of points) These works are

close in spirit to ours, but our axiomatic approach is different. Indeed, the choice

of affine sets as primitives , analogous to the classical (Hilbert) approach to

Euclidean geometry in two and three dimensions, enables the Ordered Incidence

Geometry to develop along familiar classical lines, resulting in economy and

elegance as well as a clear understading of the roles of specific classical axioms in

securing convexity theorems.

Most of the above mentioned axiomatic settings suffer from a lack of con-

crete models, in particular, models leading to useful applications in a manner

3
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similar to the way separation theorems are used to derive duality relations in

optimization theory. An effort is made here to present concrete models . see Sec-

tion 3 below. The applicability of our theory is demonstrated in Section 8 where

the separation theorem ( T7 ) is used to obtain a Fenchel-type duality theorem

for sub-F functions. (see [ I ] and [ 18 1. Sections 84-85.) The graphs of sub-F

functions are the (non-vertical) lines in a geometry, (see model ( M6 ) in Section

3), of which the above mentioned Moulton Geometry is a special case.

The paper has nine sections. The contents are outlined below:

1. Axioms. Ordered incidence geometry. Axioms of incidence, (A1)-(AS), and

order. (AS)- (Ag), for affine sets. A.ffine hulls, (Di).

2. Immediate consequences. Basic properties of affine sets. (C1)-(C8), and

separation, (D2) and (Ti).

S. Model.. Concrete models, (M1)-(M7), of ordered incidence geometries. Beck-

enbach geometries. Generating new geometries from old.

4. Triangles. Basic lemmas on triangles. (L2)-(L5), needed in the sequel.

5. Lineal hulls. Characterization of affine sets in terms of lineal hulls, (T2).

6. Convex sets. Definitions (D5)-(D7) and basic properties (L7), (T3)-(T4) of

convex sets, theii relative cores and closures. Simplices and dimension, (Do)-

(DO), (L8)- (LO). Finite-dimensional convex sets have nonempty relative cores,

(TS).

7. Separation. Halfspaces corresponding to a hyperplane, (LiO)-(Lii) and

(Dii). Separation, (D12) and (L12). Convex pairs, (Di3) and (TO). The com-

pleteness axiom (A.1O). Complete ordered incidence geometry, (D15) and (L13).

The hyperplane corresponding to a maximal convex pair. (L14), and the separa-

tion theorem (T7). -1

8. Applications to functions on the real line. Sub-F and super-F functions,

4
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"..

(Di6). Epigraphs, (LiS) and (Lie). Conjugates, (Di7) and (L17). A Fenchel

duality theorem, (T8).

9. The theorems of Radon and Helly. Radon's theorem (TO) and Helly's theorem

(T10) follow by a standard argument, (LI8).

1. AXIOMS

An Ordered Incidence Geometry ( abbreviated OIG), G, is a triple

G = { A, dim)
and an order relation (betweeness), endowed with nine axioms (Al)-( A9)

given below. Here

X is the space of elements (points),

A is a family of subsets of X, called the affine set8 of G,
dim is an integer valued function on A, called the dimension.

An a/Frne set A E A is called a k-affine if dim A - k. In particular, we use the

terms,

point for a 0-affine •

line for a 1-affine,

plane for a 2-affine, and

hyperplane for a (dimX - 1) - affine.

By convention dim 0 = -1, where 0 is the empty set.

(Al ) Axiom. A contains X, the empty set 0 and all singletons { z }, z E X.

(A2 )Intersection Axiom. A, B E A implies AlB EA.

(DI ) Definition. For S C X we define the affine hull of S, a( S), by

a(S)= n({A : A E A, S C A)

which by ( A2 ) is an affine set.

'It should be clear from the context whether a 'point' refers to an element of X or of A.

5
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The following three axioms ( A3 )-( A5 ) express monotonicity properties

of the dimension function.

(A3 )Axiom. For A, B EA&..4 C B implies dim A < dim B.

(A4 ) Axiom. For z E X A E A.

z A implies dim a(A Uz) dim A + 1
(A) Axiom. For A, B. H EA.

B,H H C A, dim H-dim A -1

f [B~~BnH 30, B not contained in H

then dim BflH= dim B-i.

The remaining axioms ( A6 )-( A9 ) define the order relation betweeness.

Points 13ing on the same line are called collinear. The above axioms imply that

two distinct points a, b determine a unique line ab containing them, see Corol-

lary ( C6 ). In fact (a= , b).

For distinct collinear points a, b, c we denote by

abc

* the fact that b is between a and c. The set of all points between a and b is the

open segment or open interval joining a, b denoted by

(a, b)

(AG ) Axiom. abc is equivalent to cba.

(A7 ) Axiom If a c then there exist points b, d such that

abc and acd.

( AS ) Axiom. If a, b, e are distinct and collinear then one and only one of

them is between the other two.

( Ag ) The Pasch Axiom. If a. b, e are non-collinear, and if L is a line in

6
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&a. b, c) with

a, bc not in L,

Lfl(a. b)# 3

then either

Lfl(a c)# o,

or

2. IIDMED1ATE CONSEQUENCES

The results in this section come close to the axioms, so close in fact th .t

they could be stated as alternative axioms.

We denote by #(S) the number of elements of the set S.

An easy consequence of definition (DI) is the following,

C1) Corolliary. For any afie set A,

S CA implies a(S) CA.

For #S =2, dim A =2 this is Hllberts9 Incidence Axiom 1,6 11].

(C2) Corollary. IfA is ak-affine, A 76 0, then there is asubset Sof A

with

#(S )-k+1
and

dim a(S).> k-1.
Proof. Let z, E A, S, z}

If k > 0 then A V& a(Sj). Therefore there is an z2 E A, z.~ a(S1 ).

4 7
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Let S. = SIU{z:..

If k .> then A 4 a(S:) and there exists an Z3 E A. z 3 e a(S.).

Let S3 = S.U{z3}, etc.

Repeating this k times gives the claimed set S.

For k - , 2, 3 this corollary reduces to Hilbert's Incidence Axioms 1,3

and 1,8 specifying the existence of:

(i) two distinct points on any line,

(ii) three non-collinear points on any plane, and

(iii) four non-coplanar points in the 3-dimensional space, see [11].

(C3 )Corollary. If S C X,z E X,then

a(SUz) = a(a(S)jz)

Proof. Follows from definition ( D1).

Cl
(C4 )Corollary. If S CX, #(S)- k+l, then dim a(S) k.

Proof. Let S - {zj, z2, ••+,

j7 and for i = 1, - ,k+1 let Si = {zj , • z;).

-" Then

dim a(S) = 0,
and for i 2,...,k+,

dim a(S)= dim ,(a(S_Uzj), by( C3)

fdim a(S.-.) if zi E a(Si- 1)

= ldim & a(S._.) + 1 otherwise, by ( A4 )

(CS ) Corollary. Let A, B be k-affines, S C AfnB. Then either

8
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a(S)= A =B

or

dim a(S) < k.

Proof. From SC An B follows &(S) CA nB, by (Di). ( A2).

If dim a(S) = k then.

a(S)CAfnBCA or B (2.1)

shows by ( A3 ) that

dim AfB = k

in which case equalities hold in (2.1) by ( A4 ).

TC

A similar consequence of ( A3 ), (A4 ) is

(C) Corollary. Let A, B E A, A C B. Then

A =B <=> dim A = dim B

The following converse of ( C2 ) can now be proved:

( C7 ) Corolary. If S C X, #S. k+1, dim a(S) > k-1 then there is a

unique k-affine A containing S.

Proof. Follows from ( C4 ) and ( C5)

iC

For k = and 2, this corollary reduces to H-ilbert's Incidence Axioms 1,1-2 and

1,4-5, respectively, [ 11 ].

The following corollary states roughly that if an affine set a.(S) is "over-

determined' by S, then certain points of S are affine combinations" of others.

( CS ) Corollary. If S C X, # S = k+1, dim &(S) < k-I then there is an z

E S such that z E &(S . z).

9
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Proof. Otherwise, by ( A4),

dim a/S) dim a{S / T} + 1. for all X E S.

dim &(S / zrUy) + 2, for all z, Y E S,

etc.

In plane geometry it is well known that the Pasch Axiom (A9) is

equivalent to a Plane Separation Aziom , ([14 ], Chapter 12). This equivalence

holds also in our geometry. First we require the following:

(D2 ) Definition. Let A. H be affine sets, A C H. Then H separates A if for

any two points z. Y E A / H such that,

(Y)nlH e(2.2)

there is no point z E A / H such that,

(z, z)rH = e and (y, z)nH 0 (2.3)

i.e. z and Y cannot be, at the same time. on "opposite" sides of H and on the

Nsamen side of H.

We have now the following

(T1 ) Theorem. Let A,H be affine sets, dim A > 1, H C A,

dim H = dim A - 1. Then H separates A.

Proof. The case dim A = 1 follows from the order axiom ( A8 ).

Let dim A > 2, and suppose H does not separate A, i.e. there are distinct

points z, I, z E A / H satisfying (2.2) and (2.3). It follows from ( A8 ) that

z. V, z are non-collinear. Let P be the plane through z. y, -. The intersectiod

P n"H is

(i) Hifdim A =2 (i.e. P = A),

(ii) a line if dim A > 2 (by ( A5 )),

10
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so that, in either case, PfH is a line, say L.

Since L intersects (z, y), it follows from (Al) that L also intersects (z, z) or

(y, z), violating (2.3).

Conversely, if (TI) is postulated then (Ag) easily follows, i.e. the two are

equivalent.

3. MODELS

In this section we give concrete models of Ordered Incidence Geometries.

(MI ) The real Euclidean n-dimensional space. Here X - R", and A and

dim agree with their standard vector space meanings. Specifically, A is

a k-afne if and only if

A = {z :z - Mu + b, uER')
where M is an n X m matrix of rank k.

(M2 ) Convex restriction of R". Let X be a given open convex subset of

R", and let A consist of the restrictions of the affine sets of ( M1 ) to . .
X"

For n - 2, 3, this model includes the Cayley-Klein Incidence Plane and Space,

respectively , [14 J, Chapter 5. We note that (M2 ) is a non-Euclidean

geometry, since through a point z off a line L there pass more than one parallel

to the line, see Fig 3.1.

The following four models represent 2-dimensional geometries, with X a

subset of the (z, y) - plane. In each case the 0-affines are the ordinary points, and

the 2-affine is X. Betweeness is to be understood in the natural way.

(M3) The Poincare Incidence Plane. Here,

X " {(z, y): z2 + y2 < 1), the interior of the unit circle,

11



Geometry Ben-Tal and Ben-Israel

L

Fig 9.1

U V (z ): x 2 + = 1). 1-affines are the restrictions to X of:

(i) lines through the origin (0, 0), and

(ii) circles which intersect UT at right angles.

See Fig 3.2 where ab, cd are lines.

(N14 The Poincare Half-Plane Incidence Plane.

X = {(z, y): y .> 0), the upper half-plane,

1-affines are the restrictions to X of

(i) vertical lines, and-

d

Fig*4

12
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(ii) circles with centers on the x-axis.

(MS The Moulton Incidence Plan.

X =the (z. i,)-plane.

1-affines are of three types:

(i) vertical lines.

(ii) lines with nonpositive slope, and

(iii) bent lines, given for any mn > 0, by

mz+O if z< 0
+ , if z>O0

The last two models are special caises of what we call Beekenbach

Geometries.

First we require

(D3 )Definition. Let (a, b) be an open interval in R. A family F of functions

F :(a, b) -> R is a Beck enbach Family (a B - Family for short.) if:

(i) each F E F is continuous on (a, b

(ii) For any two points- (zj, i), (42, Y2) with

a < zl <z2 < b
there exists a unique F E F, denoted by F 12 , such that

F12(Z1) = Yi, (i =1,2) (3.1)

Such families were introduced by Beckenbach in [1 jsee also (18 JSections
84-83.)

* (MO Beckenbach Geometries. Let

(a, b), (c, d) be open intervals (not necessarily bounded), and let

F be a B - family of functions F:(a, b)-> (e, d),

A Beckenbach Geometry is a two dimensional geometry with

13
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X the Cartesian product (a. b)x (c, d).

and the l-affme through any pair of points (z I. yl). ('. ya in X is.

(i) the vertical line z w- r, if z, = o

(ii) the graph of F12 (defined by (3.1)) if zl#Z.

A Beckenbach Geometry ( henceforth B - geometry) is completely determined by

the B - family F. To underscore this dependence we use the notation

G~Y

For the B - geometry corresponding to F.

For a B - geometry, axioms (Al ) - (A8 ) are easily shown to hold. The

validity of axiom ( A9 ) can be verified using the following result of Beckenbach

([1 1, Theorem 1), which is of independent interest.

(LI ) Lemmn . Let a < z9 < b and let Fe, F 0 be two distinct members of F

such that

f*(z,) = FO(zg),

then

F,(z) > FO(z), for all z in (a, b) on one side of z 0,

F.(z) <' FO(z), for all z in (a, b) on the other side of zo.

C
Examples of B - families

In the following examples the B - families are given in a parametric form,

F = {F: F(z) F(z; a, )}

which we abbreviate by,

F = a,

(El) The affine functions. Here (a, b) = R = (c, d),

14
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F, - {az + "- , PER)

The resulting geometry GF, is the Euclidean plane geometry.

(E2) (,b)=R, (c,d)=(0, oo).

F2 0 v ~ 7 >0, &ER}
Here G. <-> (M.4 ), the Poincare half-plane incidence plane.

( E3 ) Bent lines. Let (a, b) = R = (c, d) and let F3 be the family of func-

tions whose graphs are the 1-affines of model ( M5 ). Then

GF. <=> ( M5 ), the Moulton Incidence Plane.

(E4) F 4(z; a, {a ](z) + P#2(z) + 03(z)h
#j is continuous, i = 1, 2, 3 - -

02(z) > 0 on (a, b),
a,/ E R.

A necessary and sufficient condition for F 4 to be a B-family is that

02

is a strictly monotone function. Thus, for example, for (a, b) =R,

F = {aes + e- x) is a.B-family,

while

F -- {az + 61 is not.

E5 F,(z ; 0 ) (a, z) - 0

* differentiable in a for all z.

Here a necessary and sufficient condition for F& to be a B-family is that

ao

is a strictly monotone function of z.

E6 Fet; a, ) -- (a)u (z) + b a)v (z) - B

where

15



Geometry Ben-Tal and Ben-Israel

where

a and u are strictly increasing.

b and v are strictly decreasing.

For example.

F = {cosh (a + z) - 8: a, 0 E R)

Generating new geometries from old

Given a geometry G - {X, A, dim }, there are three obvious rules for

generating new geometries from G.

Rule 1. Let A 0 be a fixed affine set, and let G be the restriction of G to A 0,

G = {Ao, Aor) ;, dim

where

AonA = {Aon, A AE:

is the collection of anine sets (with dimensions < dim A 0 ) of G4.

Rule 2. Let C be an "open convex" subset of X, and let GC be the restriction

of G to C

GC {C, c A, dim}.
This rule was used in getting ( M2 ) from ( M1 ). The meaning of "openness'

and "convexity' (with respect to 2 will be specified in Section 6.

Rule 3. Let H :X -> Ybeone-to-oneand onto. FromG .{X. dim }

we get the geometry

9_j={Y, H(),m}

where H(6)={H(A):A E A),

and dim H (A)= dim A, for all A EA

For example, ( M4 ) is obtained from ( M3 ) by the transformation,

16
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2y

Hrz. Y) ( + ZP + 2 21- z2 - -;"

(1+ + yJ

which maps the unit circle U onto the x-axis. and its interior onto the open

upper half-plane.

Although G and G j are isomorphic, one of them may prove to be more

convenient than the other. For example, it is easier to verify the Pasch Axiom

(A9 ) in (M4) than in ( M3).

We end this section with a 3-dimensional OIG, a generalization of ( M4 ).

(M7 ) The 3-Dimensional Poineare Half-Space. Here, a

X-{ (z, ,z) :z > 0 the open upper half-space,

2-affines are the restrictions to X of

(i) vertical planes (i.e. perpendicular to the (x, y)-plane), or

(ii) half-spheres with center in the (x, y)-plane.

1-affines are the intersections of (different and intersecting) 2-affines. i.e.

(i) vertical lines, or

(H) half-circles with center in the (x, y)-plane, contained in vertical

planes.

For example, the plane a(p 1 , p2, P3) through three given non-collinear points

= (z, ys, z), i = 1, 2, 3
is constructed as follows:

(a) Let E be the Euclidean plane through Pl, P2, P3.

(b) In E, find the intersection q of the three (or of any two) perpendicular

bisectors of the triangle Ap1 92 P3"

(c) Let L be the line, perpendicular to E, through q.

(d) If L does not intersect the (x, y)-plane, then E is a vertical plane and

17
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(e Ohrws, e cb tePoitwhr3 inters aetshe(,)pln.Tn

a.(p1, p2, p) is the restriction to X of the sphere with center at c, and

radius r equal to the length of the segment cpi, (any i will do.)

It is easy to check that (M7 )satisfies (Al )-(AS ).To verify (A9 )

use its equivalent form (Ti ). In particular, the two sides of a (nonvertical) 2-

affine

P ={(z, g, )z >O, (z Qa)2 + (Y ~)+ :=r 2 )
are the 'inside" of P,

{(z. Y, z):: > 0, (z + i (Y + )2 Z2 < r2}

* . and its 'outside'.

4. TRIANGLES

Any three non-collinear points { a, b, c }constitute a triangle A abc,

taken here to mean an abstract geometrical object.

Basic properties of triangles in an QIG are given in lemmas (L2)

18 *~
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( L5 ). stated for a general triangle Aabc. These lemmas are used repeatedly in

the sequel.

(L2 )Lemma. For any u E (a. c and v E (u. b). there is a point u. E (b. c)

such that.

vE(a, w).
Proof.

Applying ( A9 ) to. the triangle Aubc, it follows that the line d'U intersects either

(b. e)or (u, c). Let w be that intersection point.

If w E (u, c) then the lines M17 and i' coincide, by ( C5 ). Therefore t is

on the line U, which (by ( C5 ) again) coincides with the line bu. This shows

(a. b, 4 to be collinear, a contradiction.

The following is a sort of converse of ( L2 ).

(L3 )Lemma. For any. u E (a, c) and w E (b, c) there is a point v in the

intersection

(a, w)f (b u).
Proof. Applying ( A9 ) to Aubc, it follows that (a, w) intersects either (b, u) or

(u, c). The latter is impossible, for it implies that the lines XWE and 9-c coincide,

b

L V

a u C

Fig 4.1 llustration of( L2 ) and( L3 )
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and thus that {a. b. c} are collinear.

L4A Lemma. Let u E (a, c) w E (b. e) Then for any r E Nu w) there is a

-E (a, b) such that

vE(c. )
Proof. By (L2 )applied to Abuc there is a wv E (b, u) such that v lac w)

Applying (L2 )again to Aabc shows the existence of a z E (a, b) such that

- ui1 f(, z)

VE(W 1, c)C(c, Z)

L

b

Fig. 4.2 lilatration of (L4)

Again, a sort of converse of (L4 )can be given:

(L5 )Lemma. Let z E (a, b). Then for any v E (c, z) there exist two points

uE(a, C) , tE(b, c)
such that

* - vWu, w).
Proof. Applying (L2 )to Aabc shows that there is a v1 E (a, c) such that

v E (b, vi).

Let u E (a, vi). BY (Ag (applied to Abvlc) it follows that the line Tv
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intersects either (b. c) or (t'i. c). The latter leads to contradiction. so let u! be

the point where TF intersects (b. e). Then

vE(u. wo)

5. LINEAL HULLS

In the Euclidean geometry R" a set A is affine if and only if

A = {Xiz,: ;EA, N"Xi=1J51

i.e. A coincides with the set of affine combination, of its elements. The analogous

geometrical representation in an QIG (where algebraic constructions such as (5.1)

are not available) is given in (T2 ).First we require:

(D4 )Definition. For a given subset S of X the lineal hull of S, I(S), is

W(S) = U{ W: z, Y ES}
the union of lines through pairs of points in S.

For a point z, we define

We also use the abbreviation

Fig 4.5 Iluetrativa of (L5)
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(L) Lemma. If A is a k-affine. zf A. then

a(A U z) - IM-)( Ur
Proof.

1102 '(AUz)Caf'AUx.I Follows by applying ( CI) twice.

112)(A Uz)Da(A Ur Let z be any point in &(A U:), and consider two cases:

(i) (z. z)qnA #
Let u E (z, n) -4 .

2 E 0C (AUx)

C I ~(A Uz)

Let u be any point in A. Then. by (A7 ),the line U contains a point y such

that

uE(Y, z)
Since (z, y)flA 0 , (z, z)flA =0 , it follows from (2.3) that

&(A Uz) &(A U:)

Y2

uA A

Fig 5.1 case (i) Fig 5.8 Cue (ii)7
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(, z)nA #0 -

Let r E (y. : ),-4. Then

z E 1(.4 U y) C 012)(A Uz.).

(T2) Theorem. S is an affine set if and only if

s i(S) (5.2)
Proof. Only if. S CI(S) always holds, and I(S)CS follows from ( Cl ).

If. Let A be a maximal affine set contained in S. If A S then S is affne.

Otherwise, let z E S / A.

SDAUZ

S =f l(S)DI(A U:), by (5.2).

S -1 4)(S):DI')(.- U ] = a (A U:), by ( L6),

contradicting the maximality of A, since &(A Ux) strictly contains A.

6. CONVEX SETS

The basic properties of convex sets are developed in this section.

(D5 ) Definitions. A set S C X is:

(i) star shaped at x if for all yES,

(x, y) C S,
(ii) convex if for any two points z, Y ES,

(Z, Y) C S.
( D6 ) Definition. For any set S C X the convex hull of S, cony(S), is the

intersection of all convex sets containing S.

(D7 ) Definitions. For any set S C X,

(i) the core of S, core S, is

23
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core S ={ZES 7YEX, Y -7- Z, ZE(Z. y) such that (r, :)CS}(6)

(ii) the relative core of S.relcore S, is defined by (6.1) with

'&y E a(S) replacing '--y E X.

(iii) the set linearly accessible froma S, lina S. is

lina S={YEX :ExES such that (x. y)CS }
(iv) the closure of S, ci S, is

ci S = S Ulina S.
V 7 Lemma. Let a set S with a nonempty relative core be star shaped at

p. Then

z E relcore S implies (p, z) C reicore S.

i.e. relcore S is also star shaped at p.

Proof. Let y be any point in a(S), and distinguish two cas:

(W Y E FY

From (p. z) C S (since S is star shaped),

(z. z) C S for some z E (z, y), (since z E reicore S),

it follows for any u E (P, z) that

(u, v) E S for some v E (u, y).
(ii) y f PE, ( see Fig. 6.1)

Since z E relcore S there is a v E (y, z) such that

(Z, V) C S (6.2)

Let z, be any point in (p, z). Lemma (LW3), applied to Aypz, implies that

(zi, y) and (p, v) intersect at a point, say z.

The proof is completed by showing that (zi, z) E S. Indeed let Z2 E (41, z).

Then Lemma ( L4 ), applied to Azpv, shows that there is a point u E (N, z)

with X2 E (p, u).

In the Sinite-dimeunonal ce., relcore S e fr any convex mt S, M T5S
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P

I I; u z

Fig 6.1

But u E S, by (6.2).

z 2 E (P, U) C S since S is star shaped. - -

(T3) Theorem. Let S be a convex set, yElina S, zErelcore S, y z. Then

(z, y) C relcore S.

Proof. Let z E (z, p). We show first that:

x, E S. Since YElina S, there is a y 3 z ES such that

(Z, Y) C S
There are two cases:

(i) z E OF.

Here either z E (y, zi),

or y E (z,

or z E (z,Y)

and in each case, z 1ES, by Axiom ( A7 ) and the convexity of S.

(ii) z f it-, ( see Fig. 6.2)

Let w E Fy be such that YE(z, w). By Lemma ( L2 ), applied to Azwz. there is

a By Lemma (L2), applied to Azwz, there is a "1 E (z, w) such that

z, E (:Ji.
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Since lina S C a(S), by ( A7 ), it follows, in that order. that

y, w, and :I

are in a(S).

Since z E relcore S, there is then a Z. E (z, zj) such chat

( iC S.
Let z.E(z, z ). Applying Axiom (A9 ) to . lw. and then to Azyz, it follows

that the line i2zintersects (z, w) at a point zSE(y, z).

From Z3 E (j, 2) C S,

z- E (z, z') C S, and the convexity of S it follows that

.E S.

We complete the proof by noting that, for any z2 E (21, ), it is also true that

z. E (z, y), and (as proved above for zi),

z2 E S. TI

Since S is convex, it is star shaped at z. and by Lemma ( L7 ),

(z, z.) C relcore S

showing that

z, 15relcore S.

ZI

Fig 6.2

26



Geometry Ben-Ta! and Ben-Israel

Remark. The assumption

z E relcore S
cannot be omitted in ( T3 ). Consider for example Fig 6.3. where the convex set

S is missing the upper side except for z. Here z E S, y E lina S but (z, y) is

not contained in S.

(T4) Theorem. Let S be a convex set. Then,

(a) relcore S,

(b) cl S,

are convex.

Proof.

(a) Follows from ( L7 ) since a convex set is star shaped at each of its points.

(b) Let z, Y EclS ( SUlinaS.) We show that (z, y) C clS. Only two

cases require proof:

(i) zES. YElina S.

Let ES be such that (:, y)CS, (see ( D7 ), (iii)).

For any W E (z, y) we show that w E lina S proving that

(ZY) C c€S
Indeed let u E (w, z), see Fig. 6.4. Then, by (L2 ), the line N intersects (y, z)

S

Fig 6.3
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at some point r. Since ZES. yES it follows that uE$. and so (w'. :) CS.

(ii) X. Y Elina S

Let Z. z. be such that

(ZiZ) C S, (z2,Y) C S.

We may assume here that zj, z- E S.

Let tv E (z. y). We again prove that w E lina S. by showing that (see Fig. 6.5)

(z1 , t') C S.

Indeed let u E (z1 , w). Then, by ( LS ) applied to Azyzj, there exist two points

u1 E (z, -I) and u2 E (z, -z2) such that

u E (u, u 2). "

From Axiom (A9 ) it follows then that the line u u. intersects either (y, z.) or

(zl, z.) at a point u3. In either case Ui3 E S, and therefore

u E (u, u3) C S.

We end this section with a result of a topological nature, Theorem ( TS),

staing that a (nonempty) finite-dimensional convex set has a nonempty relative

• - core.

(DO ) Definition. For any SCX, the dimension of S, dim S, is

• II

UU

z Z2

Fig. 6.4 Fig. 6.5
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dim S =dim a(S)
the dimension of the afine hull of S.

(D9 )Definition. An n - simplex is the convex hull of a set S with

#S=n'-1, dimnS=n.

We prove first that a simplex has a nonempty relative core.

(LO) Lemma. Let A,. =conv~xl, .. ,~ be an n-simplex. Then

relcore A.~ 3 0 (6.3)
Proof. By induction on n. For n = 1 the result follows from the order axiom

* (~A,)

Assume the lemma, holds for (n-l)-simplices. We denote

An1= COnV {zi, --- ,Xn)

which is an (n-1)-simplex by (A4 ). We prove (6.3) by showing that if

zo E relcore An,1 .
then

(z0 , z...I) C relcore An

Indeed, let z E (zo, z,... 1,, Y E &(A.) and let P be the plane &f~..i z, y 1

Since dim &(A.-,..) = dim &(An) -1, it follows from (A5S that P intersects

(A..)in a line, say L.

Since z0 E relcore An..., there are points u, v in L such that zo E (u, v). We

assume, without loss of generality, that the points y, v are on the same side of

the line zozn...i in P. Then. by ( A9 ) applied to AZOvzn-. 1, it follows that Ny

intersects either (v, zn,~.) or (zo, v) at a point z. In either case z E An and

therefore (z, z) C A.1, showing that

z E relcore An1

(LO )Lemma. If C is a nonempty convex set, dim C < oc, then
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,Z0  z

Y

Fig. 6.6 Illustration of( L8 )

dim C = dim A..
where A.. is a maximal dimensional simplex contained in C.

Proof. A maximal 1 can be constructed since C is finite-dimensional.

We prove a(C) = a(Area.

From A.. C C it follows that

.. Am J C a(c).
If &(A&a) 0 a(C) then for any z E C / a(Au),

• ' €~ony (A=.UZ}  --
is a simplex of dimension dim A,. + 1, by (A4), and contained in C. This

contradicts the maximality of AM.

(T5 ) Theorem. If C is a nonempty convex set, dim C oo, then

relcore C 0.

Proof. Follows from ( L8 ) and ( L9).

7. SEPARATION

The main result here is Theorem (T7), stating conditions under which
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any two distinct convex sets can be separated by a hyperplane.

From ( TI ) it follows that any hyperplane separates the space in the

sense of ( D2 ). We elaborate on this statement in the following:

(LIO) Lemma. Given a hyperplane H in X, there exist unique nonempty con-

vex sets H. H such that

(a) H. H , H are disjoint, and

(b) X = HUH-U-.
Proof. If dim X = 1 then H is a point, and the lemma follows from ( A8 ).

Assume dim X > 2. and let z0 be any (fixed) point not in H. Define H A , H- by:

H-" {y /H: (ze, y)flH 0 }. (7.1)

and

H- = {yfH: (z, y)nH 3 0). (7.2)
Then (a) and (b) are obvious. We now prove the remaining statements.

Nonemptiness. Let h be any point in H. Then (z@, h) C H-, for otherwise

zO, h )flH # 0. and consequently the line z C H, a contradiction.

Similarly, (h, yo) C H- for any vo E h such that h E (zo, yo), see Fig. 7.1.

Convezity. Let yl, Y2 E H" and Y E (YI, Y2).

H L

H- H-

ZO

h Y2YO

Fig. 7.1 Fig. 7.2
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If y E H- then (y. zo).H 0 and we can use (A9 to show that

(y i, zo)nL 0 or (y!. z 0o)L .A 0.
where L = Hna{zo, Y, Y2} is a line by ( A5 ). see Fig. 7.2.

Thus Yi E H- or Y2 E H-, a contradiction.

HI is convex.

The convexity of H- is similarly proved.

Uniqueness. We show that the (unordered) pair {H , H-) is independent of the

particular z0 used in (7.1),(7.2).

Indeed. let :1 E H- and define

H1 - = { H (zi. y)fH - 0)
and

j- {y H (zi, y)nH 3 )
It suffices to show that H' = H1 ".

Let Y E Hl', y f H'. Then there is a point h E Hn(zo, Y).

By ( A9 ) and (A5 ) it follows then that

Hfl(zo, z) 0
or

Hfl(z1 , Y) 34 e

both contradictory. " HI-CH " . Reversing the roles of zo and z1 , we prove

z0

Zl i

Fig. 7.9 2
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the reverse inclusion, establishing H- Hl-.

One can similarly obtain:

(Lii ) Lemma. Let H. H-. H- be as in ( L0). Then

(i) H - core H"9, H- = core H-

(ii) H =lina Hlina H-

(iii) HUH* = cl H', HUH- cl H-.

(DiO) Definitions. A convex set is

(i) open if C 3 core C,

(ii) reiativelp open if C - relcore C,

(iii) closed if C -l C.

The following definitions are justified by ( LII ) and ( DI0).

(D1i ) Definitions. Let H, H1, H- b as in.( L10 ). Then

(i) H , H- are called the open halfapaces corresponding to H.

(ii) HUH+, HUH- are called the closed hal/spaces corresponding

to H.

( D12 ) Definitions. Let A, B be subsets of X, and let H be a hyperplane.

Then

(i) H separates A and B if A and B are contained in opposite

closed halfspaces corresponding to H.

(ii) Moreover, if

A UB is not a subset of H

then H separates A and B properly.

The following lemma implies the following converse of (T1 ): The only

affine sets with the separation property (definition (1D2 )) are hyperplanes.
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(L12 )Lemma. If A,B, C are affine sets.A CB and A B. and if B

separates C, then A does not separate C.

Proof. Suppose A separates C and let A-. A- be the "opposite sides" of A in

C, i.e. ---

C - AUA-UA -  (7.3)

where A, A-, A- are disjoint,

z, V in A" or in A- > (z, vy)A=O,

zEA+,YEA- => (z,y)fA# 0.

Given that B separates C, let

C - BUB+uB- (7.4)

be the analogous decomposition of C with respect to B.

Now let z E B+ .Then z f A, and without loam of generality let z EA-. Any

other point in B must aiso be in A + for if x y E B + , V E A then(,y) -

intersects A but not B, a contradiction. Therefore

BC C A (7.5)
and similarly,

BC A-. (7.6)
Now B -- A + and B-- A is impossible, since then (7.3) and (7.4) imply

that A = B, a contradiction

Let z EA" / B " .Then z B- by (7.5), and therefore

zEB.

Let u EB+ and let v be a point in B-nfl, see Fig. 7.4.

Then u E A+, v E A-, by (7.5),(7.6) and therefore (u, v) meets A at a point,

say z. Since z A, z 3 z.

The line 5 is contained in B, by ( C1), and therefore,

u E B, a contradiction.
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X CLD n 0 77

(S D Th)efinti. IfABaedon convex air in X _ ise antnr ere pai t aC c}of-

- ~~ e oeptir {Cne se with

* X ACD. BCD. (7.7)

1k Proof. We first prove the following auxilliary result:

(i) If0 34 $ is aconvex set, and z0  S, then the set

-K(S, xq) = x: z E Jzo,.YJ,YES} (7.9)
is convex. Here we denote by [a, b]/the closed serment joining a, 6, defined by

[a, bj= (a, b)Uf a}Ufb}1. (7.10)
Proof of (i). Let xi, i: E K(S, z0) i.e. there are yl, Y2 E S such that

Let X3 E (il, z.). By Lemma (L4 ),applied to Axoyly 2 (see Fig. 7.5), the line

V

Fig 7.4 Proof of( L12)
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Z0Z3 intersects (Y1, y2) at a point, say YI3. Then 33E S and

Z E fAs, Y31 C K(S, zo)

Having established (i), the classical proof (20 J.Theorem 2.3) can be

adapted. invoking Zorn's Lemma to obtain the pair { C, D)} as a maximal ele-

ment of the set (partially ordered by inclusion) of disjoint convex sets {C, D }
satisfying (7.8).

A hyperplane separating disjoint convex sets A, B will be given, in terms

of the convex pair f{C, D} of ( T6 ), in Theorem ( T7 ) below. First we require:

(D14 )Definition. An affine set A is openly decomposable if A is the union of

two disjoint, relatively open, nonempty convex sets.

( 115 Definition. A geometry G X ,dim)} is a Complete Ordered

Incidence Geometry ( COIG for short) if it satisfies, in addition to

A-xioms (Al )-(A9 ),the following

(AO) Completeness Axiom. 'No line in G is openly decomposable. -

ZO

X1

3

Y2
1'3

Fig. 7.5 Proof of (T6
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This version of completeness agrees with its usage in algebra. It can be

shown to be equivalent to the completeness defined and used in [ 5 .

An example of a non-complete geometry is:

( MS ) The rational Euclidean n-dimensional space. Here X-= P", the

set of rational n-tuples, and A and dim agree with their standard vector

space meanings.

We need the following property of a geometry G (seemingly stronger than

competeness): No affine set (of any dimension) is openly decomposable. The next

lemma shows this to be equivalent to completeness.

( L13 ) Lemma. Let G = {X, A, dim) be a COIG. Then no affine set is

openly decomposable.

Proof. Let A E A be openly decomposable, i.e.

A = CIUC2  (7.11)
where C1, C2 are disjoint, nonempty, relatively open, convex sets.

From (7.11) it follows that

A = a(Cl) U &(C 2 )

and consequently that

A = a(C) = a(C,)
showing that, restricted to A, the relative cores of C1 and C. can be taken as

cores, i.e.

C1 - core C1, C 2 - core C2 . (7.12)

Choose any two points z i E C1 and X- E C., and let L be the line zlx.. From

(7.12) follows the existence of two points z1, z2 such that

(z,z)C L i = 1, 2.
Extending the two (relatively) open segments (z,, z,) beyond z;, (i = 1, 2), we

get the (unbounded on one side) intervals:
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S= ( , :4) Lj {yEL: ZiE(:,. y) } i = 1.2

By Zorn's Lemma. the set of such intervals has a maximal element {I , I.}. and

consequently L I1 1. showing that L is openly decomposable, violating

(Al).

The following lemma gives conditions under which we can associate with any

convex pair (C, D} a hyperplane H having {core C, core D } as its opposite

sides.

(L14) Lemma. If { C, D } is a convex pair in X, then the set H defined by

H = cl C f el D (7.13)
satisfies:

(a) Hncore C= 0 =HncoreD

(b) If the geometry is complete then H 0 S and

X = HUcore CUcore D (7.14)

(c) Moreover, if either core C p& 0 or dim X < oc, then H is a

hyperplane.

Proof.

(a) H core C = , c , D lncore C
ol D ncore C

If z E core C f ci D then:

(i) For every y 3 z there is a z E(z, y) such that

(z, z) C C, by (D7)(i)

(ii) There is a t 34 z such that (t, z) C D, by ( D7 )(iii,iv)

i.e. (t, z) n C = 0, by (7.7) contradicting (a) for y - t.

Therefore Hnore C = 0.

Similarly Hfncore D = 0.
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(b) Since X is not openly decomposable, by ( L13 ), we can choose an

z f core C U core D.

By ( D7 )(i) there is a yI such that

(z, u1)flc=0
hence (z, yv) C D by (7.7).

Similarly there is a y: such that

(z, Y)nD =0
i.e. (z, y2) C C. But then, by ( D7 )(iii),

zElinaCnlin&D CclCfrcID = H

(c) First we show that H is affine. -

Let z, y E H and let z be on the line i'. We show that z E H, proving that

I(H) = H and ,by ( T2 ), that H is affine.

If z E (z, y) then z E H by ( T4 )(b).

Let z f (z, y), and assume, by ( A8 ), that y E(z, z).

If z f H, then we may take zEcore C, by (b).

Therefore

(z, z) C core C, by ( T3)

and hence y E (z, z) C core C, by ( T4 )(a),

contradicting Y E H, by (a).

This completes the proof that H is an affine set. We show next that H X.

(i) Ifcore C 9& 0 then H #Xby(a).

(ii) If dim X < oandif H =Xthencl C =X.

Now dim' C = dim X implies that core C 3 0 , by (T5), returing

us to case (i).

Othewise, let dim C < dim X. Then

39



Geometry Ben-Tal and Den-Israel

pa contradiction. C c ( 3X

Finally. H separates M. Indeed. by (a) and (b). core C and core D are

the open halfspaces (( D1i )(i)) corresponding to H. Combining (Ti1 and

(L12 )it follows that H is a hyperplane.

Combining the above results, we can finally state the

(T7 )Separation Theorem. Let G ={X , A., dim)} be a complete ordered-

incidence geometry, and let A, B be disjoint convex sets in X Then

there is a hyperplane H properly separating A and B if:

(a) core A 0 , in which cae

Hflcore A =0

or if

(b) dim X <oc.

Proof. Let {C, D} and H be given by (T6) and (L14 )respectively. Then H

separates A and B in the sense that

A C HUcoreC =HUH- (7.15)

B C HUcoreD = HUH-
To prove proper eparation we must show, by ( D 12 )(iH) that

A UB is not a contained in H (7.16)
(a) If coreA 34 0 then, by (7.8),

core AC core C
* and (7.16) follows from (L14 )(a).

(b) Let dim X < oc, core A = 0 (otherwise it is case (a) again), and

AUBCH
then we restrict the discussion to H which we denote by H1. In H, there is a
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hyperplane H. (i.e. dim H., dim H, - 1) separating A and B in the sense of

(7.15). Now there are two cases:

(i) H. separates A and B properly

(ii) .4UBCH.

In case (ii) we repeat the process: restrict to H2. find a hyperplane H3 (in H!)

separating A and B ,etc.

From-

dim H,..1 = dim H, - 1
it follows that after finitely many repetitions, an affine set Hi is reached in which

one of the sets A, B has a nonempty core ,i.e.

dim H, -min~dim A, dim B)
and, by part (a), it is case (i),( although case (i) may occur sooner.)

Suppose then that case (i) is reached after k successive restrictions, a situation

described by

where 11k., separates A and B properly in 11k- We reverse our steps now, con-

structing a sequence of affine sets

Hk1 = AkCAk ... Cff- C ffC ff. (7.17)
where A+1 separates A and B properly in Hi, (i = k, ,O), and H1 is then

a hyperplane properly separating A and B in X

It is easily verified that a sequence (7.17) may be defined recursively as follows:

For i= k,..I,

choose any;Z E H,... / Hfj

define A-.1 =a{Rfi, z,}

Remarks.

a(a) If cor'e A 9& 0 , the assumption AflB =0 in (T7 )can be replaced by
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core A B =0

(b) Note that the proof of ( T7 ) uses the fact that no affine set is openly decom-

posable, since case (i) may arise at any dimension.

(c) The following example shows that completeness is needed in ( T7 ).

(E7 ) Example. Consider the rational line Q1 of ( M8).

Then the sets

A = {zEQ' X < %52)

B = {zcQl x > /2)}

cannot be separated by a point (hyperplane) in Q1.

S. APPLICATIONS TO FUNCTIONS ON THE REAL LINE: SUB-F

FUNCTIONS AND FENCHEL DUALITY

In this section we use the terminology and notation of Section 3. Let F be

a given Beckenbach family on the interval (a, b), see ( D3 ), and let G be the

associated B- geometry, described in ( M6).

( Di6 ) Definitions. (Beckenbach [ I1) A function f:(a, 6)-> R is a sub - F

function ( sub - F for short) if for any two points

a < z, <z< < b

and F1 2 E F defined by

F12 ( fi f (Z, i 1, 2
one has

f(z) 5 F12(z) (z 5 - < 2) (8.1)

f is 8uper-F if we have the reverse inequality in (8.1).

* Sub-F functions are generalizations of convex functions. Indeed, for the

family F, of affine functions (see ( El )), sub-F and super-F become convez

* and concave (in the ordinary sense), respectively. The importance of sub-F
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functions is evident, for example in their applications to 2nd order differential

inequalities, see e.g. 6 J.[ 12 ] and j 16 ].

In this section we study sub-F functions via their geometric properties (in

G.G ) We are able to establish useful analytical results, in particular a Fenchel

duality theorem ( T8 ) for sub-F functions.

As usual, we denote the epigraph and hypograph of f by

epi f -- () :U > ()), (8.2)

hyp = { (:):,: < (Z)1. (8.3)

As in the classical case. there is here a connection between the notions of convez-

ity of a function (here sub-F ) and convexity of a set (for the geometry &F, in the

sense of ( D5 )(ii) ). The proof of the following lemma is straightforward, hence

omitted.

(LIS ) Lemma. A function f :(a, b )-> R is:

(a) sub-F if and only if epi f is convex.

(b) super-F if and only if hypo f is convex.

The following characterization of the core of epi I is useful.

(Li6 ) Lemma. Let aI, b, be two points

a < a , < b, < b,

let f be sub-F on (a1, b1), and

A a, z<: } (8.4)

Then
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c o r e . { : G 1 . f A } (..,

Proof. We denote the right member of (8.5) by B.

core A C B. Otherwise it follows from the continuity of sub-F functions (r B J,

Theorem 6) that there is an

I: ZI
({ J E core A (8.6)

such that

:::: (i) a, < Z, < f, /(ZI)

or

(ii) z2 :1  a

or

(iii) X, = b,

In either case we contradict (8.6) by choosing an such that the open seg-

ment3

Ar ' t

does not intersect A.

In case (i) we choose (z2) with X zA2- At <" A,

,-In cases (ii) and (iii), we choose with := < a, and z2 > bl,

W fro, m (M6 )tat the open ,. .,t

44
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respectively. X1
BCcoreA. Let E B and let be any point in (a. b )X R.

We prove (8.6) by showing the existence of

A3 P A2

such that

( 'T: [z CA. (8.7)

By ( L15 )(a), it suffices to consider

( $ iA. (8.8)

We begin with the case:
I at < z2 < bj

If z1 -z , then p.. < f(z1) < ps1 by (8.5) and (8.8), and the (vertical) open seg-

ment , (4)) contains a point X3 (z3 = =), satisfying

(8.7).

If z9 x zS consider the B-function F passing through

(z,, f(z,)) i = 1,2
and the B-function G passing through (see Fig. 8.1)

(z,, i,) i 1 1, 2.

((~.jJ)P{ W P (,,) ! = X , X2

.( IN .X < z < X2 f X, & i.z .

W, F 12 s d.to.wra by F 12(z) = Pi, i = 1,2
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Since F(z2.) > G(z2) and F(zl) < G(zl) it follows that F and G inter-

sect at a point X3in A. which satisfies (8.7).

In the remaining cases (z. < ai or z. .> b1 , similar arguments can oe

.1sed.

Remark. The separation theorem (T7 ),applied to the sets (in R2)

A =core (epi f and B G- W

where z is a fixed point in (a, b), shows that a sub-F funcion has a support at

each point in (a? b) This result is stated in [16 jand applied to 2nd order

differential inequalities. Indeed, the support property in necessary and suficieut

forf to be sub-F.
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From here on we specialize to the B-families of ( ES )

F = {F(z) = o(a. x.)- 3: a. 3E R} 89
where a is differentiable in a. x and

aoan increasing function of x. ~.O

As in [2 ]we define the dual family

F'= {F'(a) = P(a, zT) - 0: z, OE RI(.1
which is a B-familly if

is an increasing function of a. (8.12)

Note that in F* the argument is a ( one of the parameters of F )and the

parameters are z, 0.Thus any pair {z, 3} determines a unique

F F( z , 0)in F. The conditions (8.10) and (8.12) guarantee that both

F and F' are B-families.

As in convex analysis [19 1'we denote the effective domain of a function

f by dom f.

(D17 )Definitions. Given a function f: (a, b)- R,

(i) the (convex) conjugate of If ,is

f (a) = sup {Wa, Z) - 1(Z) (.3
x E dom f

(Hi) the (concave) conjugate of f , f *, is

f -(Q) = mi {a, x) - f (Z) }(8.14)
x E dom f

In convex analysis, the conjugate f is always convex, regardless of I
The analogous result here is:

(L17 )Lemma.. For any function f: (a, b) -> R,

(a) the (convex) conjugate f is sub-F,
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(b) the (concave) conjugate f. is super-F°.

Proof. (a) Follows from ( L15 )(a) once we show that the set epi f is convex in

the geometry G -, determined by the dual family F'. Now

epi f2 up=6 Z

=Z q

B_> ff)z)

= ~ ~ 2 6 J_ (a, z) - 0, for all z, 6 such that 6 2! f (z)

so that, by (8.12),

epi " = n(epi F': F*E a subset of F}

Since each F ° is sub-F', it follows from ( L15 )(a) that

epi F * is convex (in Gp.),VFEF °

and therefore epi f is convex in G.-.

(b) Follows similarly from ( L15 )(b).

A duality theorem of Fenchel type (se also 19], Theorem 31.1) now fol-

lows. A (somewhat weaker) Fenchel duality theorem was proved in [2 ] for F-

convex functions:R" -_ R.

(TB ) Theorem. Let

f be a sub-F function :(a, b)-> R

g be a super-F function :(a, b)-> R

48
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and consider the pair of problems4

(P ) inf {f (z)- g(z:) z E dom f nfdom g}

(D) sup {4(a) -f'a) :aE domf dom g*}
j . Ifs f

int dor f n int domg (8.15)

then

inf( P )=max(D)
Proof. This proof is similar to Rockafellar's proof ([ 19 1, Theorem 31.1 ) for the

classical case.

From (8.13) and (8.14),

g (Z)+ g. (a)< :5 a,Z)< /(Z) + f') Z' ,'

so that

f (z) - gC=) >g.(Q) -/f'(&), 'a, = -

proving that

inf( P ) sup( D) (8.16)
In particular,

inf(P)=-ocr=> sup(D)=-oc

Let inf( P )> -oc, and denote

inf(P )

= sup{: f (z)> g(z) + 0, wz} (8.17)
By (8.16) it suffices to show that there exists an aE dor f dor go such that

g.(a) - *'(a) _ 'y (8.18)

Define two sets

A = epi f

Tb differen, f - 9 was ihown m ( 2 ]. Thoem 4) to be a ummodal fuseton.

dom f and dor g we istoerva in (a, b) .nd int d. thbe insteo.rof a re l ita.
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B =hypo (g + )={() p<gz+

Note that for families F of type (8.9),

sub-F sub-Ff su- => (f +-d)is , E R.

iuper-F I -,super -F
Therefore, using ( L15.), A and B are convex in G_.

From ( L16 ) it follows that

{coreA} fn B 0
and by (T7 ) there is a hyperplane H separating core A and B, and therefore

separating A and B.

In the geometry Gy hyperplanes are lines as defined in (M6). By (8.15), the

separating line H cannot be vertical, and therefore is of the form:

. .H -- 00." ,(,o'- _.

for some pair of parameters a ,

Since H separates A and B,

2!: 46 o '.Z) - " 8 (Z) + -.V X.

: sup{o(a', z) - f(z)) f (

'Y + < inf(a, - g(z)} 9-(*)
z

And finally,

7. g*(a) - ' (a"), proving (8.18).

The following example illustrates the validity of (T8). Here (P) is a

convex program, and there are infinitely many possible Fenchel duals,

corruponding to the various decompositions of the objective function in the form

50
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f - g. and the choice of the underlying family F. One such dual is (D )below.

(E8 Example. Let the primal problem be

(P) inf (e e)
z> 0

here the optimal solution is z =0.

* - We choose

f (z) ez + Ce2

g~z=-6zI~= f0 z > 0
I -cc otherwise

dom f=R, dom g =R'

Consider the family F of functions

F(z) =cosh (a +i z) -0

Here F =F' and (8.9)-(8.12) are satisfied. Since IE F, Iis sub-F. Also (since

F consists of convex functions), the indicator function g is (strictly) super-F.

The conjugates can be computed to give:

V~e )(c 2) f Jl : log 2
oc otherwise

g-(&) -cosh (max {0, a))
so that

dem f I -log 2, log 2], dem g, R
and the dual program is

(D ) sup (cosh (max (0, a))+ V(e - 2)(e~ 2)}
M:5 l og 2

It can be verified that the optimal solution of (D) is a*= 0, and as anticipated

by (T8)

infJP) =sup(') =2
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9. THE THEOREMS OF RADON AND HELLY

The (closely related) classical theorems of Radov. Helly and Caratheodory

(see e.g. [ 7 1) hold also for OIG. We illustrate this by proving Radon's theorem.

(T9 ) below, from which Helly's theorem. ( T10 ), follows by a standard argu-

ment.

LiS) Lemma. If S C X, #S = n + 2, dim S - n, then there is a subset

T C S, #T n ,such that

S=TUZtUY

a(T) n tz, YJ 6o.
Proof. Such a T would necessarily have

dim T n - or n - 2
by ( C4 ) and (A4 ). Also z, y cannot both lie on a(T).

We prove the lemma by induction on n.

For n = 1, the lemma is just the order axiom ( A8).

We prove it for n - 2, where its statement reads:

If #S = 4, dim a(S) = 2, then =l a line passing through 2 points of S and

separating the remaining two potnts.

Let the points be z;, i =1, 2, 3, 4.

if

•xz n4(3, ZJ 0
then the claimed T is {zI, z2). Otherwise consider AzIz2 z3 and L - z4Y for

some V E(z1 , z2), see Fig 9.1.

By (A9 ), L intersects (2, Z3) or (z,, z3). Without loss of generality, let L

intersect (2, Z3) at z. Consider now .zgYz 4. The line 2223 intersects the side

-1 (z, 24), and therefore it also intersects the side (2l, z4).

2.Z3 separates zI, X4.
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Fig. 9.1

Having established the lemma for n = 2, we assume its validity for all

dimensions < n 1. and prove it for dimension = n (> 2).

Let

S = {Zip , Z...)

and

There are now two possible cases:

(i) dim n.

Since #T = n + 1, deleting any point from if would lower the dimension by 1.

By the induction hypothesis, applied to the set 71

there is a subset, say

such that

"(T1) fl n z3o- e 0
The desired T is then

T -T, x,+
(ii) dim n = - 1.

Again by the induction hypothesis, applied to if, there is a subset, say
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*separating x. x. and the desired T is

T =T. U 2

(T9)The Radon Theorem. Let S CX,#S n +2, dim S n.Then

S can be partitioned into

S S1US2
where

and ~

cony sf ny~ S2 3A 0. '
Proof. Enough to consider the case #S = ni + 2.

We prove by induction on n.

For n = 1, the theorem follows from the order axioms.

The verification for n = 2 is as in the proof of (L18 )

Assume the theorem holds for dimensions n 1, we will prove it for

nf (> 1)

Let

By (LIS there is a subset, say

such that

a(T) n Iz. 4 ip z+ 10

Let y Efz,,., z.+2 j fla (T). Since dimn a (T) <n -1, we use the induction

hypothesis on T U y to obtain two sets TI, T2, such that

T Up T, UT2, T ifl T 2~
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and

coay T, flcony To. 0
The sets $1, So can now be given as. say

The classical proof of r20 Jcan now be used, verbatim, to obtain Helly*s terem

from Radon's. We omit the details.

(TI) The Holly Theorem. Let S be afamily of k convex sets, kc > n + 1

in X where dim X =n. If every ni + 1 gets in S have a nonempty

intersection, then S has a nonempty intersection.
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